A Bessel function multiplier

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bessel Function Multiplier

We obtain nearly sharp estimates for the L p (R 2) norms of certain convolution operators. For n 1 let n be the measure on R 2 obtained by multiplying normalized arclength measure on fjxj = 1g by the oscillating factor e inarg(x). For 1 p 1, let C(p; n) denoted the norm of the operator T n f : = n f on L p (R 2). The purpose of this note is to estimate the rate of decay of C(p; n) as n ! 1. By ...

متن کامل

Transplantation and Multiplier Theorems for Fourier-bessel Expansions

Proved are weighted transplantation inequalities for Fourier-Bessel expansions. These extend known results on this subject by considering the largest possible range of parameters, allowing more weights and admitting a shift. The results are then used to produce a fairly general multiplier theorem with power weights for considered expansions. Also fractional integral results and conjugate functi...

متن کامل

Bessel Function Zeroes

0  1  2  3   as does its derivative  0 (): 0  0 1   0 2   0 3     0 0 = 0 01   0 02   0 03   0 04    = 0 See Tables 1 & 2 for the cases  = 0 1 2 and Tables 3 & 4 for the cases  = 12 32 52. These appear in many physical applications that we cannot hope to survey in entirety. We will state only a few properties and several importan...

متن کامل

A Method for Computing Bessel Function Integrals

Infinite integrals involving Bessel functions are recast, by means of an Abel transform, in terms of Fourier integrals. As there are many efficient numerical methods for computing Fourier integrals, this leads to a convenient way of approximating Bessel function integrals.

متن کامل

Function spaces and multiplier operators

Let G denote a locally compact Hausdorff abelian group. Then a bounded linear operator T from L^2(G) into L^2(G) is a bounded multiplier operator if, under the Fourier transform on L^2(G ), for each function f in L^2(G), T(f) changes into a bounded function U times the Fourier transform of f. Then U is called the multiplier of T. An unbounded multiplier operator has a similar definition, but it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1999

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-99-04888-1